CEE 551 - Traffic Science

Topic: Traffic Signal Control (3)

Xingmin Wang

Department of Civil and Environmental Engineering University of Michigan Email: xingminw@umich.edu

Signal Timing Design

- Some basic concepts
 - Saturation flow rate, effective green, and loss time
 - v/s ratio and v/c ratio
 - Degree of saturation for intersections
- Critical movement analysis
- Signal timing design
- Example
- Delay analysis (level of service)

Loss Time

• For each phase *i*, we have the loss time:

$$G_i + Y_i + AR_i = L_i + g_i$$

- G_i : display green
- Y_i : yellow change interval
- AR_i : all-red clearance time
- L_i : loss time
- $-g_i$: effective green

Comments:

- Loss time includes the start-up loss and end-of-green loss
- Not all yellow and all-red are loss time (roughly less than half of the yellow plus the all-red)

Per-Lane Volume & v/s ratio

- Per-lane volume: total traffic volume divided by the number of lane
- For each movement, the v/s ratio is defined as the ratio of the traffic volume to the saturation flow rate for all lanes (per-lane volume divided by the saturation flow rate per-lane)
- Saturation flow rate is the maximum flow in FD, determined by the road condition including speed limit, lane width, etc.
- Saturation flow rate per lane is usually a constant (e.g., 1800 veh/(hour*lane)), therefore, per-lane volume & v/s ratio are almost equivalent

v/s ratio = per-lane volume / saturation flow rate (per lane)

• v/s ratio is more rigorous than per-lane volume considering the different saturation flow rate

v/s Ratio and Green Split (Ratio)

• Let *g*_{*i*} be the effective green of movement *i*, the green ratio is defined as:

Green ratio of movement $i = \frac{g_i}{C}$

• The (effective) green time ratio should be larger than the *v/s* ratio of the movement, otherwise, the green time cannot satisfy the traffic demand

$$\frac{g_i}{C} \ge \frac{v_i}{s_i}$$

 Example: for a movement with 1 lane, saturation flow rate 1800 vph, average traffic volume 600 vph. v/s ratio is 1/3. This means that, for each cycle, we need the effective green is larger than 1/3 of the cycle length

v/s and v/c Ratio

• For a certain movement or phase

$$\theta_{i} = \frac{g_{i}}{C} \qquad Y_{i} = \frac{v_{i}}{s_{i}} \qquad X_{i} = \frac{v_{i}}{c_{i}} = \frac{v_{i}}{s_{i} \cdot \theta_{i}} \leq 1 \qquad X_{i} = \frac{Y_{i}}{\theta_{i}}$$
Green ratio v/s ratio v/s ratio v/c ratio or Degree of saturation

- v_i : traffic volume of movement *i*
- θ_i : green ratio
- $-g_i$: effective green time
- *C*: cycle length
- c_i : capacity of the movement

Critical Movement Analysis

• "Critical path" in the ring-and-barrier diagram

 $\max\{v_1, v_5\} + \max\{v_2, v_6\} + \max\{v_3, v_7\} + \max\{v_4, v_8\} = K_2$ (Single-ring operation)

Critical Movement Analysis

Determine the Critical Movement

Critical Movement (Per-Lane) Volume

Exercise: Critical Movement Analysis

• What if we use a different phase structure?

Critical Movement Analysis

Determine Critical Movement

Critical Movement Volume

Comparison

- Which is better?
- Different phase structure could lead to different critical per-lane volumes

Degree of Saturation for an Intersection

- Degree of saturation for an intersection
 - Essentially the volume-to-capacity ratio for intersections
 - Minimum required effective green ratio divided by the total available effective green ratio

$$Y_c = \sum_i Y_i = \sum_i \frac{v_i}{s_i} \qquad X_c = \frac{Y_c}{\frac{1}{C} \cdot (C-L)} = \frac{Y_c \times C}{C-L}$$

- Y_c : summation of the v/s ratio along the critical path
- *L*: total loss time in a cycle
- *C*: cycle length
- Monotonically decreasing with the increase of *C*

Critical-Movement Volumes and Cycle Lengths

• The critical (per-lane) volume that can be handled in 3600 seconds

$$V_C = s \cdot \left(1 - \frac{Nt_L}{C}\right) = s \left(1 - \frac{L}{C}\right)$$

- V_c : max critical-movement volumes
- t_L : loss time per phase
- *N*: number of phases in each cycle

Cycle	Number of Phases		
Length (sec)	N = 2	N = 3	N = 4
60	1507	1423	1340
80	1549	1486	1423
100	1574	1524	1473
120	1591	1549	1507

TABLE 20-3 Sum of critical-lane volumes for various *C* and *N* values

How does total delay change with cycle length?

h = 2.15 sec/veh $t_L = 3 \text{ sec/phase}$

Cycle Length

Signal Timing Procedure (Steps)

- 1. Determine "Phasing" (Ring-and-Barrier Diagram)
- 2. Analyze lane group
- 3. Critical Movement (Lane Group) Analysis
- 4. Calculate Cycle Length
- 5. Determine Yellow & Clearance Intervals
- 6. Determine Proportion of Green Time
- 7. Check Pedestrian Crossing Time
- 8. Prepare Signal Indication Diagram

Step 1: Determine Phases to Use

Step 1: Determine Phases to Use

- Left Turn protected phase should be considered if any of the following criteria is met:
 - More than one turning lane is provided;
 - The left turn has a demand over 240veh/h;
 - The cross product of left turn demand and opposing through demand for 1 hour exceeds 50,000 for one opposing lane, 90,000 for two opposing through lanes, or 110,000 for three or more

Step 2: Analyze Lane Groups

- Segmenting the intersection into lane groups
 - Geometry of the intersection
 - Traffic volume of different movements
- Lane group classification
 - Exclusive turn lane
 - Shared lane
 - Remaining through lane
- Step 1 & Step 2 design principles
 - Safety: minimize the conflicting among movements
 - Efficiency: minimize the critical movement volume (v/s ratio)

Step 2: Analyze Lane Groups

Number of lanes	Movements by lane	Number of possible lane groups
1	LT + TH + RT	() (Single-lane approach)
2	EXC LT	
2	LT + TH	
3	EXC LT TH TH + RT	
		3

Step 3: Critical Movement (Lane Group) Analysis

- Critical lane group (movement): the lane group with highest v/s ratio
- Allocation of green time for each phase is based on the v/s ratios

Single ring operation

Step 3: Determine Critical Movement (Lane Group)

• Summation of total critical v/s ratio:

$$Y_c = \sum_{i=1}^n Y_i = \sum_{i=1}^n \left(\frac{\nu}{s}\right)_i$$

- Y_c : sum of flow ratio for critical lane groups
- $Y_i = \left(\frac{v}{s}\right)_i$: flow ratio for critical lane *i*
- *n*: number of critical lane groups
- Total cycle lost time:

$$L = \sum_{i=1}^{n} (t_L)_i$$

- L = Total lost time for cycle in seconds
- $(t_L)_i$ = total lost time for critical lane group *i* in seconds
- n = number of critical lane groups.

Step 4: Calculate Cycle Length

• Minimal necessary cycle length:

$$C_{\min} = \frac{L \times X_c}{X_c - Y_c}$$

- C_{\min} = minimum necessary cycle length in seconds (rounded up to the nearest 5s increment in practice)
- X_c = (desired) critical v/c ratio of the intersection
- Optimal Cycle length (Webster, 1958)

$$C_{\rm opt} = \frac{1.5 \times L + 5}{1.0 - Y_c}$$

- C_{opt} = cycle length to minimize delay in seconds

CEE 551 Traffic Science – Traffic Signal Control

Recap: $X_c = \frac{Y_c \times C}{C - I}$

Step 5: Green Time Allocation

- The effective green time is assigned to different phases proportional to the v/s ratio
- Total effective green time: G = C L
- Effective green for each phase: $g_i = G \times \frac{v_i/s_i}{\sum_i v_i/s_i} = G \cdot \frac{Y_i}{Y_c}$

$$g_i = (C - L) \cdot \frac{Y_i}{Y_c} = \frac{Y_i \cdot C}{C \times Y_c / (C - L)} = Y_i \cdot \frac{C}{X_c}$$

Recap:
$$X_c = \frac{Y_c \times C}{C - L}$$

Step 5: Allocate Green Time

• Recalculate X_c since the cycle length is rounded:

$$X_c' = \frac{Y_c \times C}{C - L}$$

• Green time for each phase:

$$g_i = \left(\frac{\nu}{s}\right)_i \left(\frac{C}{X'_c}\right) = Y_i \cdot \frac{C}{X'_c}$$

• Check whether:

$$\sum_{i=1}^{n} g_i + L = C$$

Step 6: Determine Yellow and All-red Intervals

• Yellow interval:

$$Y = t_r + \frac{V}{2a + 2gG}$$

• Red-clearance interval:

$$AR = \frac{w+l}{V}$$

- In practice, yellow interval and red-clearance interval are rounded up to nearest 0.5s
- Total clearance time = Y + AR

Step 7: Check Pedestrian Crossing Time

• The minimum pedestrian green time:

$$G_{ped} = 7 + \frac{W}{3.5 \, ft/s}$$

W: width of pedestrian crossing

• If minimum pedestrian green time is greater than green time, then green time must be increased (also cycle length)

Step 8: Signal Indication Diagram

• For each phase *i*, we have the loss time:

$$G_i + Y_i + AR_i = L_i + g_i$$

- G_i : display green
- Y_i : yellow change interval
- AR_i : all-red clearance time
- L_i : loss time
- g_i : effective green
- We need to get the display green/yellow/red

Signal Timing Example

Step 1: Determine Phasing

- Eastbound and westbound
 - Eastbound left turn= 300 veh/h >240 veh/h
 - Westbound left turn = 250 veh/h > 240 veh/h
 - Left turn phase needed!
- Northbound and southbound
 - Northbound left turn = 90 veh/h <240 veh/h</p>
 - Southbound left turn = 70 veh/h <240 veh/h</p>
 - Product of through+right and left are smaller than 50000
 - No left turn phase needed!

Step 2: Determine Lane Groups

Step 3: Critical Lane Group v/s Ratio

Step 4: Determine Cycle Length

- Assuming lost time is 4 seconds per phase.
- The optimal cycle length is:

$$C_{opt} = \frac{1.5 \times L + 5}{1.0 - Y_c}$$

$$=\frac{1.5\times4\times3+5}{1.0-(0.171+0.338+0.217)}=83.9$$

• Rounded up to 85s

Step 5: Allocate Green Time

• Calculate *X*'_c:

$$X'_{c} = \frac{Y_{c} \times C}{C - L} = \frac{0.726 \times 85}{85 - 12} = 0.845$$

$$g_i = (v_i/c_i) * (C/X'_c)$$

$$g_1 = 0.171 * 85/0.845 = 17.2s \longrightarrow 17$$

$$g_2 = 0.338 * 85/0.845 = 34s \longrightarrow 34$$

$$g_3 = 0.217 * 85/0.845 = 21.8s \longrightarrow 22$$

$$g_1 + g_2 + g_3 = 73 = C - L$$

Step 6: Clearance Time

Step 6 Clearance Time

• Vine Street

$$Y = \mathbf{T} + \left(\frac{v}{2a + 2Gg}\right)$$

$$AR = \frac{w+l}{v}$$

$$Y = 1.0 + \left(\frac{35 * 5280/3600}{2(10)}\right)$$

$$AR = \frac{60 + 20}{35 * 5280/3600}$$

Y = 3.6 =>
$$Y = 4.0 \text{ sec}$$
 AR = 1.6 => AR = 2.0 sec

Step 7: Check Pedestrian Time

$$G_{ped} = 7 + \frac{60}{3.5} = 24.2 \, s$$

Phase 2: 34 sec of Green is OK

Vine

$$G_{ped} = 7 + \frac{36}{3.5} = 17.2 \ s$$

Phase 3: 22 sec of Green is OK

Step 8: Summarize Signal Timing

Green Display = Effective Green + lost time - Y - AR

Level of Service Analysis

- Analysis Procedure (assuming signal timing plan has already been determined)
 - Determine the capacities (service) and volumes (arrivals)
 - Calculate delay
 - Determine Level of Service (LOS)
- LOS and Delays

Highway Capacity Manual Level of Service Criteria for Signalized Intersections

Level of service	Average control delay (seconds/vehicle)	Description
Α	≤10	Free flow
В	>I 0 –20	Stable flow (slight delay)
С	>20–35	Stable flow (acceptable delays)
D	>35–55	Approaching unstable flow (tolerable delay)
E	>55–80	Unstable flow (intolerable delay)
F	>80	Forced flow (congested and queues fail to clear)

Level of Service and Delays

Highway Capacity Manual Level of Service Criteria for Signalized Intersections

Level of service	Average control delay (seconds/vehicle)	Description
Α	≤10	Free flow
В	>10–20	Stable flow (slight delay)
С	>20–35	Stable flow (acceptable delays)
D	>35–55	Approaching unstable flow (tolerable delay)
E	>55–80	Unstable flow (intolerable delay)
F	>80	Forced flow (congested and queues fail to clear)

Point Queue & Spatial Queue

• Queueing diagram

- Point queue: number of waiting (stopping) vehicles
- Spatial queue: location of the end of queue
- Total delay: shadow area, unit: veh*sec

• Signal Timing Manual (2nd Edition): Chapter 5

Time-Space Diagram

• Time-space diagram: different shockwave areas

- TS diagram & queueing diagram are equivalent with the triangle fundamental diagram (only free flow & jam, or stop and go)
- How we calculate the total delay in TS diagram?

Total Travel Time in the Time-Space Diagram

• Obtain the travel time given the time-space diagram

• Number of vehicle in dashed area at time *t*

$$n(t) = s(t) \cdot k$$

• Total delay from t to t + dt $n(t) \cdot dt$

- What is the total travel time when the vehicle passing by the dashed area?

$$TTT = \int n(t)dt = k \int s(t)dt = k \cdot S_0$$
 Check the unit!

- S_0 : area in the time-space diagram

