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LWR model

J LWR model formulation

o Combining the conservation law and flow-density empirical relationship, we will have the
LWR (Lighthill-Whitham-Richards) model:

ak(x, t) aCI(X, t) X  Ok(x,t) N aQe(kax' t)) 0
T + F =0 dk(x,t) N aQe(k(x, t)) _ 0 at P)

q(x,t) = Qo(k(x, 1)) ot 0x

o Initial state (boundary condition): k(x, 0) = ky(x)

|
k(x,0) = ko(x)

 Solving the LWR model
o Solving the PDE is to get k(x, t) at any time t and location x given the location x
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Vehicle speed, shockwave, and characteristic line

1 These three have different meanings, definitions, and speeds
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Riemann problem

[ Riemann problem: solving the LWR model with step initial state
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Riemann problem: shockwave solution

d We will get a shockwave solution if k; < k,
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Shockwave example: queue build-up

(d We have upstream constant arrival and downstream queue (jam density)
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Riemann problem: rarefaction fan solution

J We can twist the input step function into a continuous function
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Rarefaction example: queue dissipation

1 Vehicle discharging from jam density
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Outline

J A simp
J Examp
 Examp

ified shockwave solution
e 1: highway moving bottleneck
e 2: signalized intersection

[ Calculating total delay with the TS diagram
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Outline

A simplified shockwave solution
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Simplified solution for rarefaction fan

 While rarefaction is a more accurate solution, we can still use “shockwave” method
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Simplified solution for rarefaction fan

 While rarefaction is a more accurate solution, we can still use “shockwave” method
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TP Y Tray

.
Why we can do this ™y

It is easy to verify that the “shockwave solution” for the rarefaction fan also satisfies
the LWR model equations (conservation law and fundamental diagram)

(J Recap that when we derive the shockwave speed (based on the conservation law),
we do not require the upstream density is less than the downstream density

d The “shockwave solution” for rarefaction fan essentially disregards the vehicle
acceleration process

 Solution of the Riemann problem is not unique, this is why LWR model is ill-posed
(solution not unique and has discontinuity)
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Shockwave solution of LWR model

O If we use a shockwave method also for the rarefaction fan case, we will have a uniform
“shockwave” solution for both shockwave and rarefaction fan

1 Shockwave can be regarded as the boundary between stationary traffic states

O Shockwave speed is the slope of the line connecting two traffic states in FD (the derivation is
based on the conservation law)

q a
x q2 Shockwave speed
qi |
k, d2 — q1
A/ Vs =
Vg ky — kq
k1 vs > 0: moving to the downstream

v, = 0: stationary
v, < 0: moving to the upstream

&V
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Summary of the shockwave theory

d Step 1: determine the traffic states on both sides and label them in FD
d Step 2: get the shockwave speed based on the given FD

O Step 3: draw the shockwave line as the boundary of the two traffic states
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Summary of the shockwave theory

d Step 1: determine the traffic states on both sides and label them in FD
d Step 2: get the shockwave speed based on the given FD

O Step 3: draw the shockwave line as the boundary of the two traffic states

=

q 1
o We do not need to distinguish
shockwave & rarefaction fan.

They are all within the same
solution framework

==

o We do not need to care about
characteristic lines anymore,
since traffic states are always
uniform on both sides of the
shockwave
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Outline

J Example 1: highway moving bottleneck
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Example 1: highway moving bottleneck
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Example 1: highway moving bottleneck
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Example 1: highway moving bottleneck
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A truck enters the highway at t; with a slower speed v; and exits at B. Traffic volume is q,
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Example 1: highway moving bottleneck
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Example 1: highway moving bottleneck
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Outline

 Example 2: signalized intersection
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Example 2: signalized intersection

J A roadway controlled by a traffic signal. The vehicle arrives at a constant arrival rate
of g;. The FD and traffic signal state are given. How to get the traffic state in a cycle
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Example 2: signalized intersection

J A roadway controlled by a traffic signal. The vehicle arrives at a constant arrival rate
of g;. The FD and traffic signal state are given. How to get the traffic state in a cycle
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Example 2: signalized intersection

J A roadway controlled by a traffic signal. The vehicle arrives at a constant arrival rate
of g;. The FD and traffic signal state are given. How to get the traffic state in a cycle
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Example 2: signalized intersection

J A roadway controlled by a traffic signal. The vehicle arrives at a constant arrival rate
of g;. The FD and traffic signal state are given. How to get the traffic state in a cycle
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Example 2: signalized intersection

1 Vehicle trajectories in the time-space diagram
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Example 2a: triangular fundamental diagram

J What if we have a triangular fundamental diagram?
d What is the difference?

A X
q A
der ke
q1, k1
N
Pl
t j
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Example 2a: triangular fundamental diagram

1 Time-space diagram of signalized intersection under a triangular FD

de ke
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Example 2a: triangular fundamental diagram

1 Time-space diagram of signalized intersection under a triangular FD
o Vehicle trajectories only have two states: stop and go (free-flow)

A X
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Example 2b: oversaturation

 If the green light duration is not sufficient, the queueing vehicle will not be
discharged within a traffic cycle
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Example 2b: oversaturation

 If the green light duration is not sufficient, the queueing vehicle will not be
discharged within a traffic cycle
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Queue length estimation with detector data

(1 We can detect the queue length given high-resolution detector data by identifying
the boundaries (break points) between traffic states

Distance

A . H e
AT Al N

oo O

LooE [:]

Detector

@coooo

S

t

Liu, Henry X., et al. "Real-time queue length estimation for congested signalized
intersections." Transportation research part C: emerging technologies 17.4 (2009): 412-427 .
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Detector data records

(Sec) Detector Occupancy Time
50

» A Time gap

30 /

Break Point B N
Occupancy time

= - S R Time
7:26:07 7:26:50 7:27:33 7:28:16 7:29:00
(Sec) Time Gap Between Consecutive Vehicles
10

/)Pattern I: Capacity condition(g,.k,) ° Occupancy time: speed
7.5

g \ / Pattern II: Free flow arrival (4;.k;) - Time gap: headway
5 / \ \ (reciprocal of the traffic flow

Break Point C
\ rate)
2.5 —

0 )

7:26:07 7:26:50 7:27:33 7:28:16 7:29:00 Time

M MICHIGAN ENGINEERING CEE 551 Traffic Science — Traffic Flow Theory




Outline

[ Calculating total delay with the TS diagram

M MICHIGANIH\IGINEERING CEE 551 Traffic Science — Traffic Flow Theory

UNIVERSITY OF MIC



Total travel time in the TS diagram

J Total travel time equals to the density times the area in the TS diagram

* Number of vehicle in dashed area attime t
n(t) =x(t) -k
e Total travel time fromttot + dt
n(t) - dt

~

" Space x

* Total travel time for vehicles in the shaded region:

TTT = fn(t)dt =k fx(t)dt =k -5,

(S, is the area of shaded region in the TS diagram)

\ 4

Time » Similarly, we have the total travel distance:

TTD = q -
950 Check units!
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Calculating delay caused by traffic signal

(] Based on the total travel time equation, we can calculate the total delay caused by
traffic signals

A X rX

TS diagram with signal TS diagram without signal

o e e e e e e e e e e e e e e e e T e T T e e e e e T e e e e T e e e

T TTTTTTTTTTTTTTTTTTTFTTTTTFTFFTTTFTFTTTFTFTTTFFTTTIrFFFrrrrrrry.

q1, k1 q1, k1

~ ~
7 7

t t

Total delay = TTT,, — TTTy, /o = z k;S; — kq Z S; (Si denotes the area of each
: i region in the TS diagram)

Level of service analysis
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Traffic signal optimization

d With the delay evaluation, we can formulate the traffic signal optimization program:

minz D;(C;, 9i,q:)

gi
l
S.t. Zgi =C

 This is just a simple demonstration, there are many details regarding traffic signals
which will be covered in the second part of this course
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Edie’s definition of average flow and density

1 Space x
TTT = fn(t)dt =k jx(t)dt =k -5,
TTD =q - S,
T TTT TTT
$ Sy, AxAt
__TTD TTD
> 1= 75~ = dxat

Edie, L. C. (1963). Discussion of Traffic Stream Measurements and Definitions.
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Empirical FD from vehicle trajectories

T 700 » EO
:-" 2000 - E2
E2 600 s
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. . o 0 lID 2ID 3ID 4ID
Tips for generating empirical FD Density {veh  (lane - km)

(Key: each dot in FD should represent a relatively uniform traffic state)

« Careful selection of the spatial and temporal resolutions
« Set various inputs and bottlenecks such as scatters can cover all conditions

Flow (veh / (lane - hour))
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Homework assighment

] Homework 1
(1 Due time: 09/23

J (Homework submitted after the deadline without a valid reason will be accepted
with a maximum possible score of 80%)
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