CEE 551 Traffic Science

Traffic Flow Theory Lecture I

Traffic flow variables, fundamental diagram, and conservation law

Dr. Xingmin Wang Department of Civil and Environmental Engineering University of Michigan Email: xingminw@umich.edu

CEE 551 Traffic Science – Traffic Flow Theory

My suggestions on learning traffic flow theory

- \Box Traffic flow theory: simple intuition but complicated math. It is the basics of this whole course but the most difficult part
- \Box There will be many mathematical derivations... (particularly the next lecture)
	- o At least once, go through and understand the derivation step by step on your own
	- \circ Link the math with physical meaning
	- \circ The ultimate goal is to understand the underlying intuition
- \Box Lectures closely related to each other: if you miss one, you will be lost in the following lectures
- \Box If possible, attend class in person

MICHIGAN ENGINEERING

- \Box Learn with simple examples (if not included in the slides, think about your own simple real-world examples)
- \Box Recommended materials: slides + TFT_document.pdf
- \Box Schedule office hour with me if necessary (email: xingminw@umich.edu)

Outline

- \Box Traffic flow variables
- Measurement of traffic states
- \square Fundamental diagram
- Q Conservation law

Outline

\Box Traffic flow variables

- **Q** Measurement of traffic states
- **Q**Fundamental diagram
- **Q** Conservation law

Time-space diagram, traffic flow and density

 \Box Definition of (average) traffic flow and density based on the time-space diagram

IGINEERING

- $N^x(x,t)$: number of vehicles passing location x from $t-\frac{1}{2}\Delta t$ to $t+\frac{1}{2}\Delta t$ 2 2
- $N^t(x,t)$: number of vehicles traversing time *t* from $x - \frac{1}{2}\Delta x$ to $x + \frac{1}{2}\Delta x$
- Average traffic density

$$
\bar{k}(x,t) = \frac{N^t(x,t)}{\Delta x} \quad \left[\frac{veh}{distance} \right]
$$

• Average traffic flow rate

$$
\bar{q}(x,t) = \frac{N^x(x,t)}{\Delta t} \qquad \left[\frac{veh}{time}\right]
$$

(It does not matter it is either from $t-\frac{1}{2}\Delta t$ to $t+\frac{1}{2}\Delta t$ 2 2 or from t to $t + \Delta t$ when $\Delta t \rightarrow 0$, the same for x)

Space-mean speed and time-mean speed

 \Box Space-mean speed (SMS, more frequently used)

- \circ Defined based on a certain road segment $[x, x + \Delta x]$ and time interval $[t, t + \Delta t]$
- \circ Individual vehicle's travel time τ_i is measured
- o Distance traveled divided by the average travel time

$$
\bar{v}^{s}(x,t) = \frac{\Delta x}{\frac{1}{N} \sum_{i=1}^{N} \tau_{i}} = \frac{1}{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\nu_{i}}}
$$

(Harmonic mean)

- \circ (Total travel distance divided by total travel time)
- \Box Time-mean speed (TMS)
	- \circ Measure the speed of individual vehicle as $v_i(t)$
	- \circ Average of individual vehicle speeds at certain time t

$$
\bar{v}^t(t) = \frac{1}{N} \sum_{i}^{N} v_i(t)
$$

(Arithmetic mean)

Harmonic mean < Arithmetic mean

SMS ≤ TMS

Macroscopic traffic flow variables

 $\overline{q}(x,t) = \overline{k}(x,t) \cdot \overline{v}(x,t)$

 \circ Number of vehicles passing location x from time t to $t + \Delta t$

 $\Delta N = \bar{v}(x,t)\Delta t \cdot \bar{k}(x,t)$

 \circ Flow rate at (x,t) :

$$
\overline{q}(x,t) = \frac{\Delta N}{\Delta t} = \overline{v}(x,t)\overline{k}(x,t)
$$

Example: average speed calculation

 \Box A road segment (10 $m \times 2$ sec) with two vehicles passing through with constant speeds $(5 m/s$ and $10 m/s)$

$$
\tau_1 = 2 \, \text{s}, \quad v_1 = 5 \, \text{m/s}
$$
\n
\n $\tau_2 = 1 \, \text{s}, \quad v_2 = 10 \, \text{m/s}$

$$
\bar{v}^t = \frac{v_1 + v_2}{2} = \frac{5 + 10}{2} = 7.5 \, m/s
$$
\n
$$
\bar{v}^s = \frac{\Delta x}{\frac{1}{2} \cdot (\tau_1 + \tau_2)} = \frac{10}{\frac{1}{2} \cdot (2 + 1)} = \frac{20}{3} \approx 6.67 \, m/s
$$

o Question: in the equality $\overline{q} = \overline{k} \cdot \overline{v}$, is \overline{v} spacemean speed or time-mean speed?

Example: verification of $\overline{q} = \overline{k} \cdot \overline{v}$

 \Box A road segment (10 $m \times 2$ sec) with two vehicles passing through with constant speeds $(5 m/s$ and $10 m/s)$

MICHIGAN ENGINEERING

$$
\bar{v}^t = 7.5 \, m/s
$$

20

$$
\bar{v}^s = \frac{-5}{3} \approx 6.67 \, m/s
$$
\n
$$
\bar{q} = \frac{2 \, veh}{\Delta t} = \frac{2}{2} = 1 \, veh/s
$$
\n
$$
\bar{k} = \frac{1}{10 \, m} \cdot \frac{2 \, veh \cdot 1 \, s + 1 \, veh \cdot 1 \, s}{2 \, s} = 0.15 \, veh \, / \, m
$$
\n
$$
\bar{v} = \frac{\bar{q}}{\bar{k}} = \frac{1}{0.15} = \frac{20}{3} = \bar{v}^s
$$

o In $\bar{q} = \bar{k} \cdot \bar{v}$, \bar{v} is the space-mean speed

Microscopic traffic flow variables

Relationship between different traffic variables

 \Box Average spacing $\bar{s}(x,t)$ and average density $\bar{k}(x,t)$ are reciprocals of each other

 \Box Average headway $h(x,t)$ and average flow rate $\overline{q}(x,t)$ are reciprocals of each other (with a similar proof)

> $\overline{k}(x, t) \cdot \overline{s}(x, t) = 1$ $\overline{h}(x, t) \cdot \overline{q}(x, t) = 1$

Outline

\Box Traffic flow variables

Measurement of traffic states

- **Q**Fundamental diagram
- **Q** Conservation law

Inductance loop detectors

Traffic flow measurements with loop detectors

\Box Measurements (outputs) of loop detectors

- \circ Occupancy (%): proportion of the time with detected vehicles
- o Count (veh): number of vehicles passing through

 \circ For each vehicle, the total travel distance detected by the loop detector is: $L + L_0$

 $(L:$ length of the vehicle, $L_0:$ length of the detector)

\Box Macroscopic traffic flow variables

 $\overline{q} =$ Cou ΔT \times 3600 $[veh/hour, vph]$ $k =$ 5280 × Occupancy $\frac{100 \times (L + L_D)}{200 \times (L + L_D)}$ [veh/mile]

$$
\bar{v} = \frac{\bar{q}}{\bar{k}} = \frac{68.18 \times (L + L_D)}{\Delta T} \times \frac{Count}{Occupancy} \quad [mile/hour, mph]
$$

- L, L_D : in units of feet
- ΔT : time interval (resolution) of the loop detector, in unit of seconds
- Occupancy: %

Inferring densities from occupancy

Recap:
$$
\bar{s} \cdot \bar{k} = 1
$$
 $\bar{k} = \frac{1}{\bar{s}} = \frac{Occupancy}{L + L_D}$ $\bar{k} = \frac{5280 \times Occupancy}{100 \times (L + L_D)}$ $[veh/mile]$
\n(international unit, IU) *occupancy*: % (5 as 5%)

• L, L_D : feet

Vehicle trajectory data

 \Box If we can collect the vehicle trajectories of all vehicles, we can get the complete traffic state (location of each individual vehicle, headway, and spacing)

Vehicle trajectory data

 \Box If we can collect the vehicle trajectories of all vehicles, we can get the complete traffic state (location of each individual vehicle, headway, and spacing)

Eulerian vs. Lagrangian

 \Box These two terminologies are borrowed from fluid dynamics

Outline

\Box Traffic flow variables

Q Measurement of traffic states

\square Fundamental diagram

Q Conservation law

Fundamental Diagram (FD)

ENGINEERING

- \Box Fundamental diagram: empirical relation between flow, density and speed
- \Box Two basic relations: speed-density relation $V_e\left(\bar{k}(x,t)\right)$ and flow-density relation $Q_e\left(\overline{k}(x,t)\right)$ (subscript e means empirical)

- v_f : free-flow speed \circ k_i : jam density
- o Monotonically decreasing $v - k$ curve

Obtaining fundamental diagram

 \Box From direct measurement

o Video camera, loop detectors, and vehicle trajectories

 \Box Derive from car-following models

 \circ Newell's simplified car-following model \rightarrow triangular FD

Empirical relations: Greenshields' Model (1934)

Bruce D. Greenshields (1893-1979)

CEE 551 Traffic Science – Traffic Flow Theory

A brief history of Bruce D. Greenshields

- \Box Bruce D. Greenshields, Ph.D., Civil Engineering, 1934
- **□** Father of traffic flow theory. Pioneering work on traffic flow measurements. Found empirical relationship among traffic flow variables, which is known as "fundamental diagram"

FEBRUARY 9, 2024

MICHIGAN ENGINEERING

U-M CEE Prof. Henry Liu Formally Recognized as the Bruce D. Greenshields Collegiate **Professor of Engineering**

Dr. Liu chose Bruce D. Greenshields when he was recognized as collegiate professor of COE.

Reference:

- Kühne, Reinhart. "Foundation of traffic flow theory I: Greenshields legacy highway traffic." *Proceedings Symposium on the Fundamental Diagram: 75 years*. 2008.
- [https://cee.engin.umich.edu/2024/02/09/u-m-cee-prof-henry-liu](https://cee.engin.umich.edu/2024/02/09/u-m-cee-prof-henry-liu-formally-recognized-as-the-bruce-d-greenshields-collegiate-professor-of-engineering/)[formally-recognized-as-the-bruce-d-greenshields-collegiate](https://cee.engin.umich.edu/2024/02/09/u-m-cee-prof-henry-liu-formally-recognized-as-the-bruce-d-greenshields-collegiate-professor-of-engineering/)[professor-of-engineering/](https://cee.engin.umich.edu/2024/02/09/u-m-cee-prof-henry-liu-formally-recognized-as-the-bruce-d-greenshields-collegiate-professor-of-engineering/)

Greenshields' model

UNIVERSITY OF MICHIGAN

 \Box Linear relationship between speed and density

CEE 551 Traffic Science – Traffic Flow Theory

Greenshields' model: $q - k$ relationship

 \Box $q - k$ (flow-density) relationship is the most widely used FD relationships among all three traffic flow variables (q, k, v)

$$
Q_e(\overline{k}) = v_f \overline{k} \left(1 - \frac{\overline{k}}{k_{jam}} \right) \quad \text{(a parabola)}
$$

$$
\frac{\partial q}{\partial k} = 0 \quad \implies \quad k_c = \frac{k_j}{2}
$$

Newell's simplified car-following model

 \Box Newell (2002) assumed a linear relationship between vehicle spacing and speed:

 $s_i(t) = \beta_{i,2} + \beta_{i,1} v_i(t)$ $0 \le v_i(t) < v_f$

where $\beta_{i,1}$ and $\beta_{i,2}$ are driver-specific parameters.

Deriving FD with Newell's car-following model

CEE 551 Traffic Science – Traffic Flow Theory

Triangular fundamental diagram

$$
v(k) = \begin{cases} 0, & k \ge k_j \\ \frac{1}{\beta_1 k} - \frac{\beta_2}{\beta_1}, & k_c < k < k_j \\ v_f, & k \le k_c \end{cases}
$$

$$
q(k) = \begin{cases} 0, & k \ge k_j \\ \frac{1}{\beta_1} - \frac{\beta_2}{\beta_1} k, k_c < k < k_j \\ v_f k, & k \le k_c \end{cases}
$$

 $\sqrt{ }$

$$
k_{j} = \frac{1}{s_{j}} = \frac{1}{\beta_{2}}.
$$

$$
k_{c} = \frac{1}{s_{c}} = \frac{1}{v_{f}\beta_{1} + \beta_{2}}
$$

Outline

- \Box Traffic flow variables
- **Q** Measurement of traffic states
- **Q**Fundamental diagram
- \Box Conservation law

Conservation law

 \Box For an arbitrary road segment $[x, x + Δx]$

Traffic flow relationship

 \Box Traffic flow physics

 $q(x, t) = k(x, t) \cdot v(x, t)$

 \square Conservation law

$$
\frac{\partial k(x,t)}{\partial t} + \frac{\partial q(x,t)}{\partial x} = 0
$$

 \Box Empirical observation (fundamental diagram)

$$
q(x,t) = Q_e(k(x,t))
$$

Reading

- □ TFT Document.pdf, "First-Order Macroscopic Traffic Flow Modeling", Section 1-4
- Kühne, Reinhart. "Foundation of traffic flow theory I: Greenshields legacy highway traffic." *Proceedings Symposium on the Fundamental Diagram: 75 years*. 2008.
- Newell, Gordon Frank. "A simplified car-following theory: a lower order model." *Transportation Research Part B: Methodological* 36.3 (2002): 195-205.

Homework assignment

 \Box Problem 1 and Problem 2 of Homework 1 \Box No due time yet

