Learning the max pressure control for urban traffic networks considering the phase switching loss

Xingmin Wang

Ph.D. candidate, Civil and Environmental Engineering University of Michigan, Ann Arbor

INFORMS 2022 Indianapolis

- □ Background: traffic signal control
- □ Introduction to the max pressure control
- □ Switching-curve-based max pressure control
- □ Max pressure control and reinforcement learning
- Simulation studies
- Conclusions

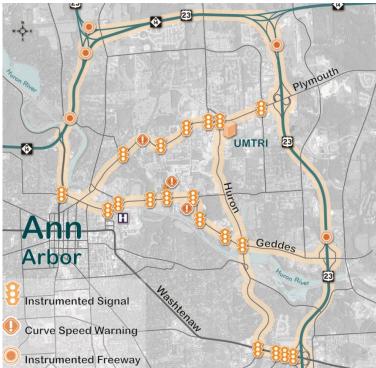
Background

- Traffic congestions
 - In 2017, traffic congestion caused urban Americans to travel extra 8.8 billion hours and to purchase extra 3.3 billion gallons of fuel*
- Traffic signal control
 - Fixed timing plan
 - Vehicle-actuated control
 - Adaptive control

Ann Arbor connected vehicle test environment

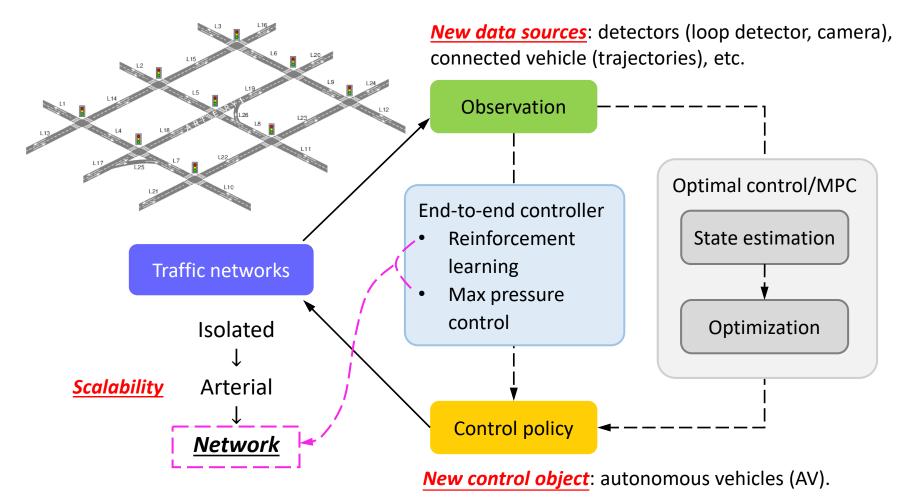
 The development of connected and autonomous vehicles (CAV) provides new opportunities for the traffic signal control

*: Lasley, Phil. "2019 Urban mobility report." (2019).



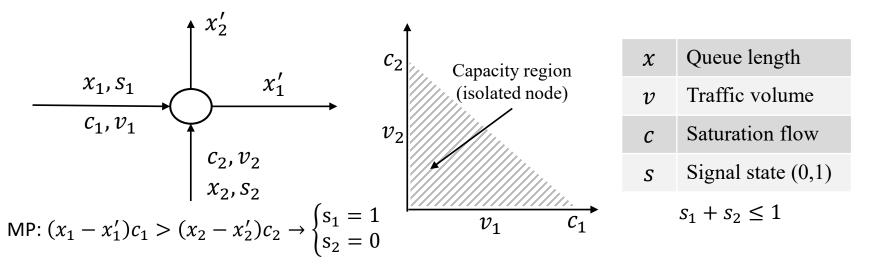
Opportunities and challenges for traffic signal control with CAV

• From the classic control diagram



Introduction to the max pressure control

- Max pressure control for general urban traffic networks
 - For each movement, the *pressure* is defined as the upstream queue lengths minus the downstream queue lengths times the saturation flow
 - Max pressure control (MP): each intersection always chooses the phase with the largest pressure



 It can be proved that, under the <u>store-and-forward model</u>, the max pressure control can <u>stabilize</u> the network queue lengths if the traffic demand is within the network capacity (<u>throughput-optimal</u>)

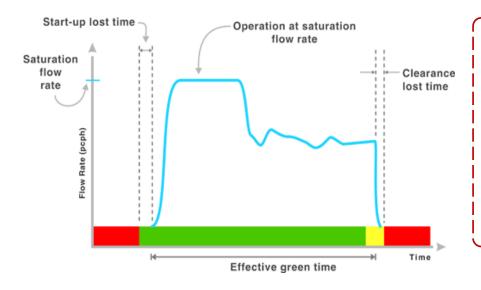
Varaiya, Pravin. "Max pressure control of a network of signalized intersections." Transportation Research Part C: Emerging Technologies 36 (2013)

Advantages and limitations

- What we like about the max pressure control
 - *Distributed*: each intersection decides its own control policy
 - <u>End-to-end</u>: the control policy can be directly generated from the observation
 - Therefore, the max pressure control is easy to implement even for a large-scale traffic network
 - <u>Global stability</u>: it can be proved to stabilize the global network under the store-and-forward model
- What we concern about
 - Most of the concerns are with regard to the assumptions of the storeand-forward model (compared with the real-world traffic)
 - No link travel time \rightarrow bad coordination among intersections
 - Infinite link capacity \rightarrow link spill-over or gridlock
 - No <u>switching loss</u> \rightarrow over-saturation (undermine the stability)

Phase switching loss

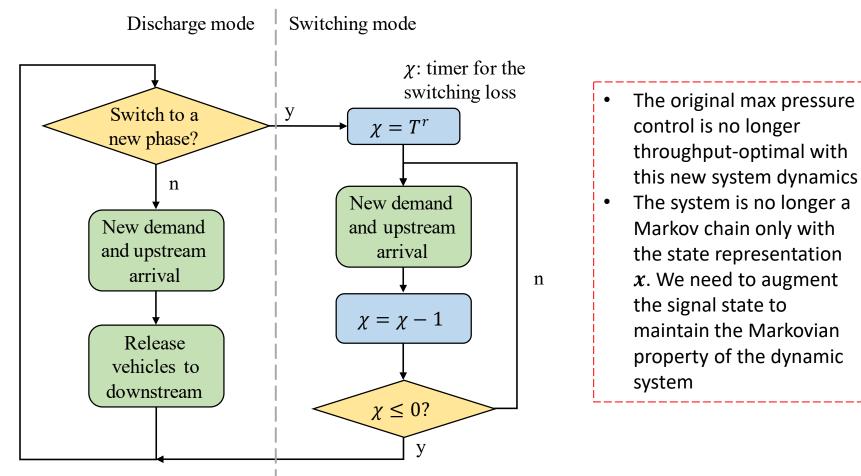
- Phase switching loss
 - Start-up loss and clearance time
 - Higher traffic volume \rightarrow larger cycle length
- Max pressure control and phase switching loss
 - There is no cyclic structure in the max pressure control but the phase switching frequency reflects the cycle length



- To ensure the network stability, the switching frequency of the max pressure control should decrease with the increase of the traffic volumes.
- However, the conventional max pressure control does not consider this factor

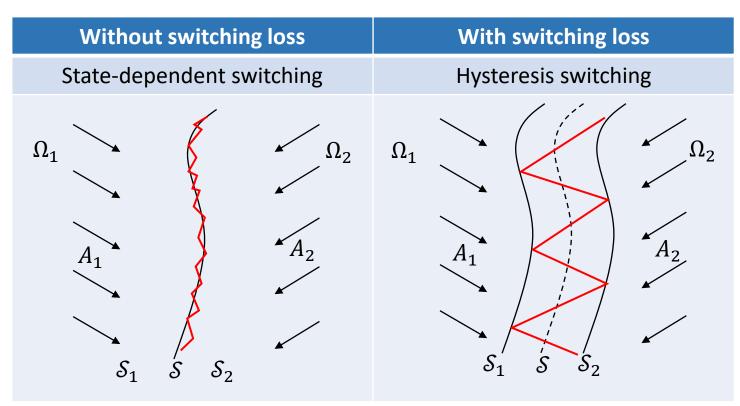
Modeling the phase switching loss in the store-andforward model

• With the phase switching loss, the vehicle can only pass the intersections during the discharge mode



Control policy design considering the switching loss: hysteresis switching

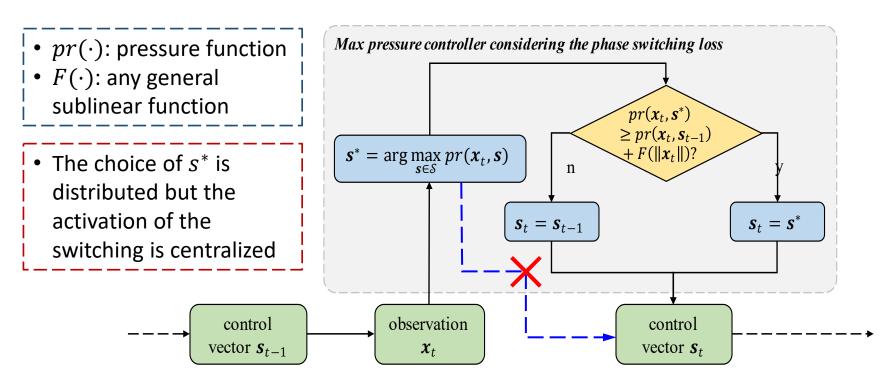
State-dependent switching and hysteresis switching



The zigzag of the trajectories without the switching loss would disappear if the system is continuous and there is no disturbance

Proposed switching-curve-based max pressure

- Switching-Curve-based Max Pressure control (SCMP)
 - Intuition (<u>hysteresis switching</u>): instead of choosing the policy with the largest pressure for each time step, we only switch to a new control policy when the pressure is larger than the current control policy by a certain threshold



Extension of SCMP

- Extend SCMP for practical implementation
 - Although SCMP is proved to be a throughput-optimal policy, it is a centralized control policy derived based on a simplified point-queue network model
 - To further adapt SCMP to the real-world implementation, we extend SCMP to <u>*Extended-SCMP*</u> in two aspects: <u>distributed approximation</u> and use the <u>position-weighted pressure</u>
- Distributed switching
 - The switching rule in SCMP is centralized for the convenience of the proof

SCMP:
$$\psi(t) = \max_{s \in S} \operatorname{pr}(\mathbf{x}_t, s) - \operatorname{pr}(\mathbf{x}_t, \mathbf{s}_{t-1}) - F(||\mathbf{x}_t||) \ge 0$$

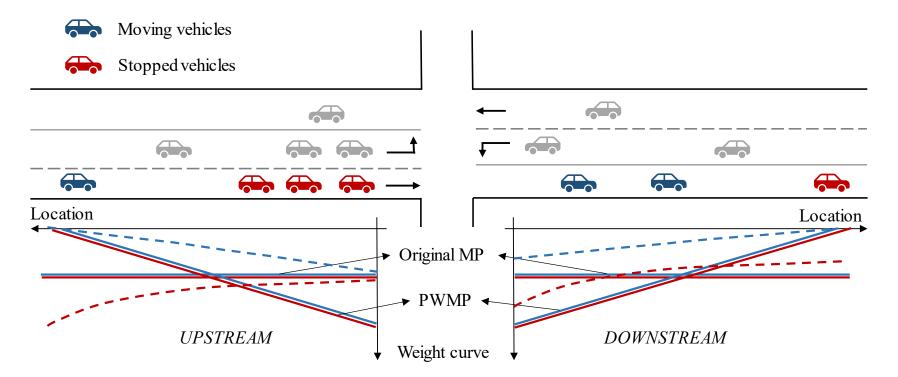
$$\checkmark$$

 Distributed approximation in which each intersection decides its own decision

ESCMP:
$$\psi^n(t) = \max_{s^n \in S^n} \operatorname{pr}\left(\mathbf{x}_t^n, s^n\right) - \operatorname{pr}\left(\mathbf{x}_t^n, s_{t-1}^n\right) - F\left(\|\mathbf{x}_t^n\|\right) \ge 0$$

Extension of SCMP (cont'd)

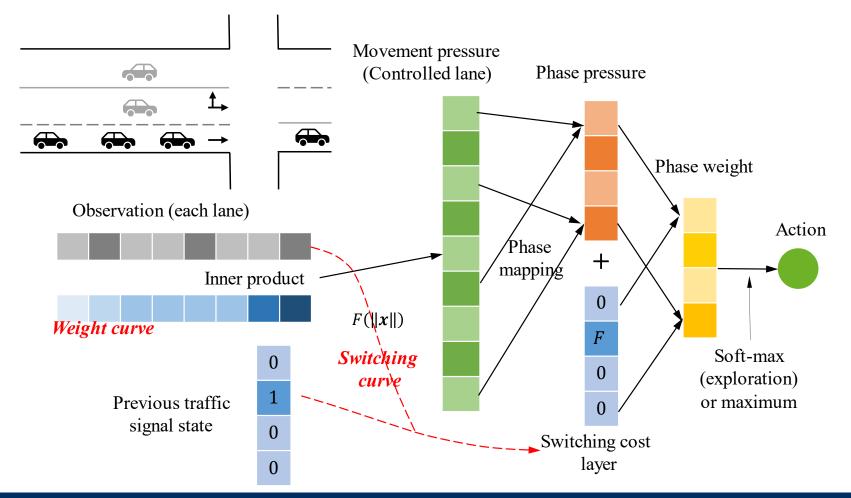
- Position-weighted pressure
 - Intuition: vehicle at different locations along the road might exert different influence on the signalized intersection



Li, Li, and Saif Eddin Jabari. "Position weighted backpressure intersection control for urban networks." *Transportation Research Part B: Methodological* 128 (2019): 435-461.

Overall max pressure policy network

 Max pressure control policy network with the switching curve and the weight curve (ESCMP)



Parameter optimization of the max pressure control using the reinforcement learning

- Parameter optimization using reinforcement learning
 - Based on the proposed max pressure policy network with the <u>switching curve</u> and <u>the weight curve</u>, we can use the reinforcement learning to optimize these two parametric curves to get a better system performance
- Introduction to the policy-gradient reinforcement learning
 - System state trajectory: $\tau = [s_0, a_0, s_1, a_1, ...]$, reward $r(\tau)$
 - **<u>Parametric policy</u>** $a_t \sim \pi_{\theta}(\cdot \mid s_t)$

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} r(\tau) = \arg \max_{\theta} J(\theta)$$

• Policy gradient optimization

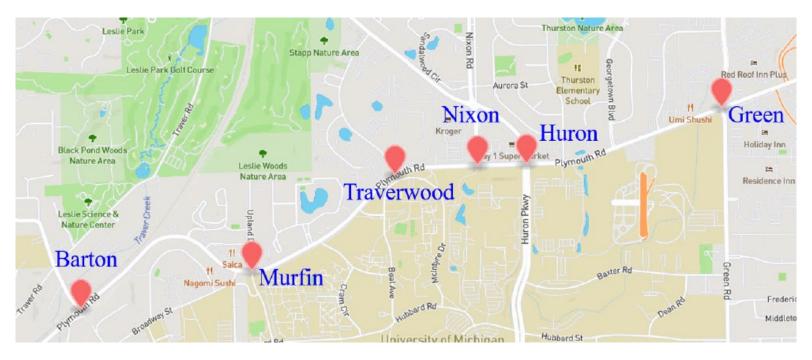
$$\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\theta) \qquad \nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[r(\tau) \sum_t \pi_{\theta} (a_t \mid s_t) \right]$$

Why utilizing RL further?

- The throughput-optimal policy only ensures the system stability (bounded total queue lengths); it does not ensure the optimal total system delay
- The max pressure control is derived based on a simplified point-queue model, RL can help to tune the parameters based on a more realistic simulation environment

Simulation studies

- Setup of the simulation studies
 - Simulation platform: SUMO
 - Chosen network topology: Plymouth Rd., Ann Arbor
 - Traffic demand: calibrated during the peak hour

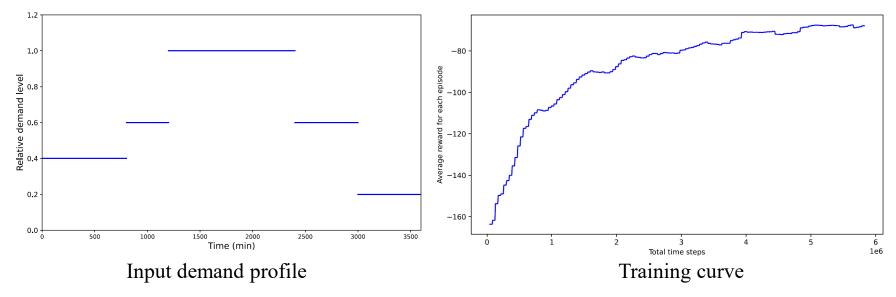


Performance evaluation: experimental settings

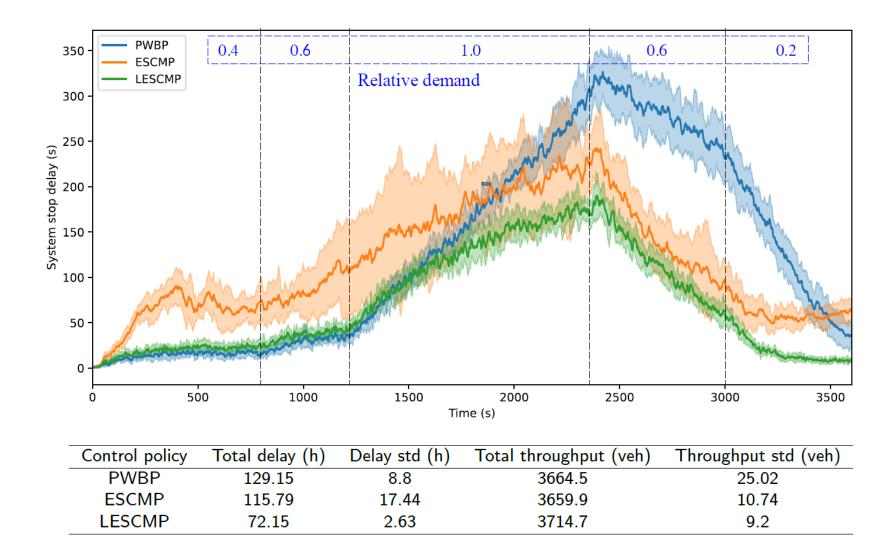
- Three controllers are tested using the simulation platform
 - PWBP (position-weighted back pressure control): benchmark max pressure controller does not consider the phase switching loss
 - ESCMP (Extended-SCMP): extended switching-curve-based max pressure control
 - LESCMP (Learned-ESCMP): ESCMP in which the parameters are optimized using the policy-gradient RL algorithms
- Two test scenarios
 - Time-varying demand scenario
 - Stationary demand scenario: using different demand levels
- Two metrics: network stop delay and throughput

Max pressure control parameters optimization using the reinforcement learning

- Configuration for the reinforcement learning
 - Algorithms: proximal policy optimization (PPO)
 - <u>Policy network</u>: the proposed max pressure policy network with the switching curve and weight curve
 - Value network (critic): fully-connected neural network
 - State: number of vehicle in each cell and the current signal state

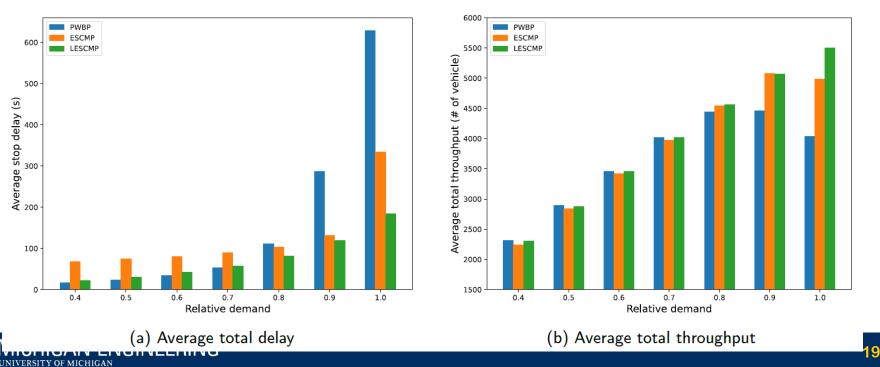


Performance evaluation: time-varying demand



Performance evaluation: stationary demand

- Summary for the numerical results
 - PWBP has a good low-demand performance but a bad highdemand performance
 - ESCMP and LESCMP performs much better than PWBP under the high-demand scenario
 - LESCMP performs well in all levels of demand



Summary

- We propose a switching-curve-based max pressure (SCMP) control that is *proved to be throughput-optimal* over the store-andforward model with phase switching loss
- We extend SCMP by utilizing a distributed switching approximation and the position-weighted pressure (Extended-SCMP)
- With the max pressure policy network (ESCMP), the policy-gradient reinforcement learning is further utilized to optimize the parameters in the controller
- The simulation studies show that both ESCMP and LESCMP have better high-demand performance than the conventional max pressure control and LESCMP performs well in all demand levels
- Practical significance: the proposed control policy suits well for the real-world implementation especially for the <u>large-scale network</u> since it is <u>distributed</u> among intersections and directly generates the control policy from the observation (<u>end-to-end</u>)

Acknowledgement

Research project sponsored by

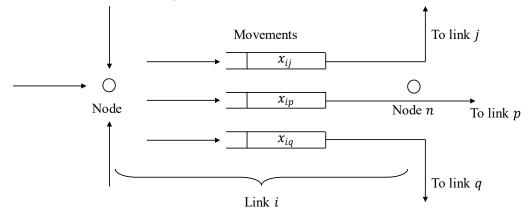
- Collaborators
 - Dr. Henry Liu, Dr. Yafeng Yin, and Dr. Yiheng Feng
- Presented work published in:
 - Wang, X., Yin, Y., Feng, Y. and Liu, H.X., 2022. Learning the max pressure control for urban traffic networks considering the phase switching loss. *Transportation Research Part C: Emerging Technologies*, *140*, p.103670.

Thank you!

Contact: xingminw@umich.edu

Store-and-forward network model

• The max pressure control is derived based on the storeand-forward model (point-queue network model)



$$x_{ij}(t+1) = x_{ij}(t) + a_{ij}(t) + \sum_{k} r_{ij}(t) \min\{x_{ki}(t), c_{ki}s_{ki}(t)\} - \min\{x_{ij}(t), c_{ij}s_{ij}(t)\}, \forall m = (i, j) \in \mathcal{M}^{o}$$

$$\mathbf{x}(t+1) = \mathbf{x}(t) + \mathbf{a}(t) - (\mathbf{I} - \mathbf{R}) \cdot \min\{\mathbf{x}(t), \mathbf{C}\mathbf{s}(t)\},\$$

x	Queue length	С	Saturation flow
а	Exogenous arrival	S	Signal state $(0,1)$
r	Turning ratio		

Stability of the max pressure control

• The max pressure control is essentially the <u>Lyapunov drift</u> <u>minimization policy</u> under the store-and-forward model

• Lyapunov function:
$$V(t) = \frac{1}{2} \mathbf{x}(t)^T \mathbf{x}(t) = \frac{1}{2} \sum_{m \in \mathcal{M}} x_m^2$$

(Bounded Lyapunov function \rightarrow bounded total queue lengths)

• Lyapunov drift: $\Delta(t) = \mathbb{E}[V(t+1) - V(t) | \mathbf{x}(t)]$

Substitute the dynamics equation $x(t+1) = x(t) + a(t) - (I - R) \cdot \min\{x(t), Cs(t)\}$

- Upper bound of the drift: $\Delta(t) \leq B \mathbf{x}^T(t)(\mathbf{I} \mathbf{R})\mathbf{C}\mathbf{s}(t)$
- \circ Minimize the upper bound \rightarrow max pressure control

 $\min B - \mathbf{x}^{T}(t)(\mathbf{I} - \mathbf{R})\mathbf{C}\mathbf{s}(t) \rightarrow \max \mathbf{x}^{T}(t)(\mathbf{I} - \mathbf{R})\mathbf{C}\mathbf{s}(t)$ <u>Max pressure control</u>

Proof of the stability: Foster-Lyapunov theorem

Stability of SCMP

MICHIGAN ENGINEERING

- Sufficient conditions for network stability (main theorem)
 - Given a policy that always chooses the max pressure policy whenever the switching is activated, the network will be stable if the following conditions are satisfied (demand <u>strictly</u> within the capacity, otherwise no controller can stabilize the network)

$$\begin{aligned} \tau_{k+1} &\geq \tau'_{k+1}; & (eq 1) \\ &\mathbb{E}\left[(\tau'_{k+1} - \tau_k) \left| S_{\tau_k} \right] \geq c_1 (1 - \delta'(\|\mathbf{x}(\tau_k)\|)) F(\|\mathbf{x}(\tau_k)\|); & (eq 2) \\ &\mathbb{E}\left[(\tau'_{k+1} - \tau_k)^2 \left| S_{\tau_k} \right] \leq T_r^2 + c_2 \left(F(\|\mathbf{x}(\tau_k)\|) \right)^2; & (eq 3) \\ &\mathbb{E}\left[L(\mathbf{x}(t+1)) - L(\mathbf{x}(t)) \left| S_t \right] \leq -\epsilon \|\mathbf{w}(\mathbf{x}(t))\|, \quad \forall \mathbf{x}(t) \in C^o, t \in \{\tau'_{k+1}, \tau'_{k+1} + 1, ..., \tau_{k+1}\}; & (eq 4) \end{aligned}$$

