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Background

• Traffic congestions
• In 2017, traffic congestion 

caused urban Americans to 
travel extra 8.8 billion hours and 
to purchase extra 3.3 billion 
gallons of fuel*

• Traffic signal control
• Fixed timing plan
• Vehicle-actuated control
• Adaptive control
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• The development of connected and autonomous vehicles 
(CAV) provides new opportunities for the traffic signal control  

Ann Arbor connected vehicle test environment 

*: Lasley, Phil. "2019 Urban mobility report." (2019).



Opportunities and challenges for traffic signal 
control with CAV
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Observation

Traffic networks

Control policy

End-to-end controller
• Reinforcement 

learning
• Max pressure 

control

Scalability

Isolated
↓

Arterial
↓

Network

New data sources: detectors (loop detector, camera), 
connected vehicle (trajectories), etc.

New control object: autonomous vehicles (AV).

Optimal control/MPC

State estimation

Optimization

• From the classic control diagram



Introduction to the max pressure control
• Max pressure control for general urban traffic networks

• For each movement, the pressure is defined as the upstream queue 
lengths minus the downstream queue lengths times the saturation flow

• Max pressure control (MP): each intersection always chooses the phase 
with the largest pressure 

• It can be proved that, under the store-and-forward model, the max 
pressure control can stabilize the network queue lengths if the traffic 
demand is within the network capacity (throughput-optimal)

4

Varaiya, Pravin. "Max pressure control of a network of signalized intersections." Transportation Research Part C: Emerging Technologies 36 (2013)
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Advantages and limitations
• What we like about the max pressure control

• Distributed: each intersection decides its own control policy

• End-to-end: the control policy can be directly generated from the 
observation

• Global stability: it can be proved to stabilize the global network 
under the store-and-forward model

• What we concern about
• Most of the concerns are with regard to the assumptions of the store-

and-forward model (compared with the real-world traffic)

• No link travel time → bad coordination among intersections

• Infinite link capacity → link spill-over or gridlock

• No switching loss → over-saturation (undermine the stability)
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• Therefore, the max pressure control is easy to implement 
even for a large-scale traffic network



Phase switching loss

• Phase switching loss
• Start-up loss and clearance time
• Higher traffic volume → larger cycle length

• Max pressure control and phase switching loss
• There is no cyclic structure in the max pressure control but the 

phase switching frequency reflects the cycle length
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• To ensure the network stability, the 
switching frequency of the max 
pressure control should decrease with 
the increase of the traffic volumes. 

• However, the conventional max 
pressure control does not consider this 
factor



Modeling the phase switching loss in the store-and-
forward model

• With the phase switching loss, the vehicle can only pass the 
intersections during the discharge mode
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Discharge mode Switching mode

𝜒: timer for the 
switching loss • The original max pressure 

control is no longer 
throughput-optimal with 
this new system dynamics

• The system is no longer a 
Markov chain only with 
the state representation 
𝒙𝒙. We need to augment 
the signal state to 
maintain the Markovian 
property of the dynamic 
system



Control policy design considering the switching 
loss: hysteresis switching
• State-dependent switching and hysteresis switching
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The zigzag of the trajectories without the switching loss would disappear if the system is continuous and 
there is no disturbance 

Without switching loss With switching loss

State-dependent switching Hysteresis switching

Ω1 Ω2

𝒮𝒮1 𝒮𝒮2𝒮𝒮

Ω1 Ω2

𝒮𝒮1 𝒮𝒮2𝒮𝒮

𝐴𝐴1 𝐴𝐴2 𝐴𝐴1 𝐴𝐴2



Proposed switching-curve-based max pressure

• Switching-Curve-based Max Pressure control (SCMP)
• Intuition (hysteresis switching): instead of choosing the policy 

with the largest pressure for each time step, we only switch to 
a new control policy when the pressure is larger than the 
current control policy by a certain threshold
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observation 
𝒙𝒙𝑡𝑡

control 
vector 𝑪𝑪𝑡𝑡−1

𝑪𝑪∗ = arg max
𝑪𝑪∈𝒮𝒮

𝑝𝑝𝑝𝑝(𝒙𝒙𝑡𝑡 , 𝑪𝑪)

𝑝𝑝𝑝𝑝 𝒙𝒙𝑡𝑡 , 𝑪𝑪∗
≥ 𝑝𝑝𝑝𝑝 𝒙𝒙𝑡𝑡 , 𝑪𝑪𝑡𝑡−1
+ 𝐹𝐹 𝒙𝒙𝑡𝑡 ?

𝑪𝑪𝑡𝑡 = 𝑪𝑪𝑡𝑡−1 𝑪𝑪𝑡𝑡 = 𝑪𝑪∗

control 
vector 𝑪𝑪𝑡𝑡

Max pressure controller considering the phase switching loss

yn

×

• The choice of 𝑠𝑠∗ is 
distributed but the 
activation of the 
switching is centralized 

• 𝑝𝑝𝑝𝑝(⋅): pressure function
• 𝐹𝐹(⋅): any general 

sublinear function



Extension of SCMP
• Extend SCMP for practical implementation

• Although SCMP is proved to be a throughput-optimal policy, it is a 
centralized control policy derived based on a simplified point-queue 
network model

• To further adapt SCMP to the real-world implementation, we extend 
SCMP to Extended-SCMP in two aspects: distributed approximation 
and use the position-weighted pressure

• Distributed switching
• The switching rule in SCMP is centralized for the convenience of the 

proof
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≥ 0SCMP:

≥ 0ESCMP:

• Distributed approximation in which each 
intersection decides its own decision



Extension of SCMP (cont’d)
• Position-weighted pressure

• Intuition: vehicle at different locations along the road might 
exert different influence on the signalized intersection

11
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Stopped vehicles

Location Location

Weight curve

Original MP

DOWNSTREAMUPSTREAM

PWMP

Li, Li, and Saif Eddin Jabari. "Position weighted backpressure intersection control for urban networks." Transportation 
Research Part B: Methodological 128 (2019): 435-461.



Overall max pressure policy network

• Max pressure control policy network with the switching 
curve and the weight curve (ESCMP)
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Parameter optimization of the max pressure control 
using the reinforcement learning

• Parameter optimization using reinforcement learning
• Based on the proposed max pressure policy network with the 

switching curve and the weight curve, we can use the 
reinforcement learning to optimize these two parametric 
curves to get a better system performance

• Introduction to the policy-gradient reinforcement learning
• System state trajectory: 𝜏𝜏 = 𝑠𝑠0,𝑎𝑎0, 𝑠𝑠1,𝑎𝑎1, … , reward 𝑟𝑟(𝜏𝜏)

• Parametric policy 𝑎𝑎𝑡𝑡 ∼ 𝜋𝜋𝜃𝜃 ⋅ 𝑠𝑠𝑡𝑡

• Policy gradient optimization
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𝜃𝜃∗ = arg max
𝜃𝜃

𝔼𝔼𝜏𝜏∼𝜋𝜋𝜃𝜃𝑟𝑟(𝜏𝜏) = arg max
𝜃𝜃

𝐽𝐽(𝜃𝜃)

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝛼𝛼∇𝜃𝜃𝐽𝐽 𝜃𝜃 ∇𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼𝜏𝜏∼𝜋𝜋𝜃𝜃 𝑟𝑟(𝜏𝜏)�
𝑡𝑡

𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡 ∣ 𝑠𝑠𝑡𝑡)



Why utilizing RL further?

• The throughput-optimal policy only ensures the system 
stability (bounded total queue lengths); it does not ensure 
the optimal total system delay

• The max pressure control is derived based on a simplified 
point-queue model, RL can help to tune the parameters 
based on a more realistic simulation environment
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Simulation studies

• Setup of the simulation studies
• Simulation platform: SUMO
• Chosen network topology: Plymouth Rd., Ann Arbor
• Traffic demand: calibrated during the peak hour
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Performance evaluation: experimental settings 

• Three controllers are tested using the simulation platform
• PWBP (position-weighted back pressure control): benchmark 

max pressure controller does not consider the phase 
switching loss

• ESCMP (Extended-SCMP): extended switching-curve-based 
max pressure control

• LESCMP (Learned-ESCMP): ESCMP in which the parameters 
are optimized using the policy-gradient RL algorithms

• Two test scenarios
• Time-varying demand scenario
• Stationary demand scenario: using different demand levels

• Two metrics: network stop delay and throughput
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Max pressure control parameters optimization 
using the reinforcement learning
• Configuration for the reinforcement learning 

• Algorithms: proximal policy optimization (PPO)
• Policy network: the proposed max pressure policy network with the 

switching curve and weight curve
• Value network (critic): fully-connected neural network
• State: number of vehicle in each cell and the current signal state
• Reward (cost): network stop delay
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Input demand profile Training curve



Performance evaluation: time-varying demand

18



Performance evaluation: stationary demand

• Summary for the numerical results
• PWBP has a good low-demand performance but a bad high-

demand performance
• ESCMP and LESCMP performs much better than PWBP 

under the high-demand scenario
• LESCMP performs well in all levels of demand
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Summary
• We propose a switching-curve-based max pressure (SCMP) control 

that is proved to be throughput-optimal over the store-and-
forward model with phase switching loss

• We extend SCMP by utilizing a distributed switching approximation 
and the position-weighted pressure (Extended-SCMP)

• With the max pressure policy network (ESCMP), the policy-gradient 
reinforcement learning is further utilized to optimize the parameters 
in the controller

• The simulation studies show that both ESCMP and LESCMP have 
better high-demand performance than the conventional max 
pressure control and LESCMP performs well in all demand levels

• Practical significance: the proposed control policy suits well for the 
real-world implementation especially for the large-scale network 
since it is distributed among intersections and directly generates 
the control policy from the observation (end-to-end)
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Store-and-forward network model 

• The max pressure control is derived based on the store-
and-forward model (point-queue network model)
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𝑥𝑥𝑖𝑗
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Stability of the max pressure control

• The max pressure control is essentially the Lyapunov drift 
minimization policy under the store-and-forward model

• Proof of the stability: Foster-Lyapunov theorem
24

o Lyapunov function: 𝑉𝑉 𝑡𝑡 = 1
2
𝒙𝒙 𝑡𝑡 𝑇𝑇𝒙𝒙 𝑡𝑡 = 1

2
∑𝑚𝑚∈ℳ 𝑥𝑥𝑚𝑚2

o Lyapunov drift: Δ 𝑡𝑡 = 𝔼𝔼 𝑉𝑉 𝑡𝑡 + 1 − 𝑉𝑉 𝑡𝑡 ∣ 𝒙𝒙(𝑡𝑡)

(Bounded Lyapunov function → bounded total queue lengths)

Substitute the dynamics equation

𝒙𝒙 𝑡𝑡 + 1 = 𝒙𝒙 𝑡𝑡 + 𝒂𝒂 𝑡𝑡 − 𝑰𝑰 − 𝑹𝑹 ⋅ min{𝒙𝒙 𝑡𝑡 ,𝑪𝑪𝑪𝑪(𝑡𝑡)}

o Upper bound of the drift: Δ 𝑡𝑡 ≤ 𝐵𝐵 − 𝒙𝒙𝑇𝑇(𝑡𝑡) 𝑰𝑰 − 𝑹𝑹 𝑪𝑪𝒔𝒔(𝑡𝑡)

o Minimize the upper bound → max pressure control

min𝐵𝐵 − 𝒙𝒙𝑇𝑇(𝑡𝑡) 𝑰𝑰 − 𝑹𝑹 𝑪𝑪𝑪𝑪(𝑡𝑡) → max𝒙𝒙𝑇𝑇(𝑡𝑡) 𝑰𝑰 − 𝑹𝑹 𝑪𝑪𝑪𝑪(𝑡𝑡)
Max pressure control



Stability of SCMP

• Sufficient conditions for network stability (main theorem)
• Given a policy that always chooses the max pressure policy 

whenever the switching is activated, the network will be stable 
if the following conditions are satisfied (demand strictly within 
the capacity, otherwise no controller can stabilize the network)
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𝜏𝜏𝑘𝑘 𝜏𝜏𝑘𝑘+1𝜏𝜏𝑘𝑘+1′

𝑘𝑘th 
switching

(𝑘𝑘 + 1) th 
switching

Random
 stopping time

(Step-by-step negative
 Lyapunov drift, eq4)

(Lyapunov drift can be 
bounded using eq2, eq3)

(eq 1)
(eq 2)
(eq 3)

(eq 4)
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